Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 603
Filtrar
1.
Nat Commun ; 15(1): 3218, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622151

RESUMO

Flash Joule heating (FJH) is an emerging and profitable technology for converting inexhaustible biomass into flash graphene (FG). However, it is challenging to produce biomass FG continuously due to the lack of an integrated device. Furthermore, the high-carbon footprint induced by both excessive energy allocation for massive pyrolytic volatiles release and carbon black utilization in alternating current-FJH (AC-FJH) reaction exacerbates this challenge. Here, we create an integrated automatic system with energy requirement-oriented allocation to achieve continuous biomass FG production with a much lower carbon footprint. The programmable logic controller flexibly coordinated the FJH modular components to realize the turnover of biomass FG production. Furthermore, we propose pyrolysis-FJH nexus to achieve biomass FG production. Initially, we utilize pyrolysis to release biomass pyrolytic volatiles, and subsequently carry out the FJH reaction to focus on optimizing the FG structure. Importantly, biochar with appropriate resistance is self-sufficient to initiate the FJH reaction. Accordingly, the medium-temperature biochar-based FG production without carbon black utilization exhibited low carbon emission (1.9 g CO2-eq g-1 graphene), equivalent to a reduction of up to ~86.1% compared to biomass-based FG production. Undoubtedly, this integrated automatic system assisted by pyrolysis-FJH nexus can facilitate biomass FG into a broad spectrum of applications.


Assuntos
Carbono , Carvão Vegetal , Grafite , Biomassa , Fuligem
2.
ACS ES T Water ; 4(4): 1166-1176, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633372

RESUMO

The widespread adoption of an agricultural circular economy requires the recovery of resources such as water, organic matter, and nutrients from livestock manure and sanitation. While this approach offers many benefits, we argue this is not without potential risks to human and environmental health that largely stem from the presence of contaminants in the recycled resources (e.g., pharmaceuticals, pathogens). We discuss context specific challenges and solutions across the three themes: (1) contaminant monitoring; (2) collection transport and treatment; and (3) regulation and policy. We advocate for the redesign of sanitary and agricultural management practices to enable safe resource reuse in a proportionate and effective way. In populous urban regions with access to sanitation provision, processes can be optimized using emergent technologies to maximize removal of contaminant from excreta prior to reuse. Comparatively, in regions with limited existing capacity for conveyance of excreta to centralized treatment facilities, we suggest efforts should focus on creation of collection facilities (e.g., pit latrines) and decentralized treatment options such as composting systems. Overall, circular economy approaches to sanitation and resource management offer a potential solution to a pressing challenge; however, to ensure this is done in a safe manner, contaminant risks must be mitigated.

3.
Sci Total Environ ; : 172622, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642761

RESUMO

The phyllosphere is a vital yet often neglected habitat hosting diverse microorganisms with various functions. However, studies regarding how the composition and functions of the phyllosphere microbiome respond to agricultural practices, like nitrogen fertilization, are limited. This study investigated the effects of long-term nitrogen fertilization with different levels (CK, N90, N210, N330) on the functional genes and pathogens of the rice phyllosphere microbiome. Results showed that the relative abundance of many microbial functional genes in the rice phyllosphere was significantly affected by nitrogen fertilization, especially those involved in C fixation and denitrification genes. Different nitrogen fertilization levels have greater effects on fungal communities than bacteria communities in the rice phyllosphere, and network analysis and structural equation models further elucidate that fungal communities not only changed bacterial-fungal inter-kingdom interactions in the phyllosphere but also contributed to the variation of biogeochemical cycle potential. Besides, the moderate nitrogen fertilization level (N210) was associated with an enrichment of beneficial microbes in the phyllosphere, while also resulting in the lowest abundance of pathogenic fungi (1.14 %). In contrast, the highest abundance of pathogenic fungi (1.64 %) was observed in the highest nitrogen fertilization level (N330). This enrichment of pathogen due to high nitrogen level was also regulated by the fungal communities, as revealed through SEM analysis. Together, we demonstrated that the phyllosphere fungal communities were more sensitive to the nitrogen fertilization levels and played a crucial role in influencing phyllosphere functional profiles including element cycling potential and pathogen abundance. This study expands our knowledge regarding the role of phyllosphere fungal communities in modulating the element cycling and plant health in sustainable agriculture.

4.
Nat Commun ; 15(1): 2695, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538640

RESUMO

Global potent greenhouse gas nitrous oxide (N2O) emissions from soil are accelerating, with increases in the proportion of reactive nitrogen emitted as N2O, i.e., N2O emission factor (EF). Yet, the primary controls and underlying mechanisms of EFs remain unresolved. Based on two independent but complementary global syntheses, and three field studies determining effects of acidity on N2O EFs and soil denitrifying microorganisms, we show that soil pH predominantly controls N2O EFs and emissions by affecting the denitrifier community composition. Analysis of 5438 paired data points of N2O emission fluxes revealed a hump-shaped relationship between soil pH and EFs, with the highest EFs occurring in moderately acidic soils that favored N2O-producing over N2O-consuming microorganisms, and induced high N2O emissions. Our results illustrate that soil pH has a unimodal relationship with soil denitrifiers and EFs, and the net N2O emission depends on both the N2O/(N2O + N2) ratio and overall denitrification rate. These findings can inform strategies to predict and mitigate soil N2O emissions under future nitrogen input scenarios.


Assuntos
Agricultura , Solo , Solo/química , Óxido Nitroso/análise , Fertilizantes/análise , Nitrogênio , Concentração de Íons de Hidrogênio , Microbiologia do Solo , Desnitrificação
5.
Environ Sci Technol ; 58(13): 5899-5910, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502922

RESUMO

The established benefits of ozone on microbial pathogen inactivation, natural organic matter degradation, and inorganic/organic contaminant oxidation have favored its application in drinking water treatment. However, viable bacteria are still present after the ozonation of raw water, bringing a potential risk to membrane filtration systems in terms of biofilm accumulation and fouling. In this study, we shed light on the role of the specific ozone dose (0.5 mg-O3/mg-C) in biofilm accumulation during long-term membrane ultrafiltration. Results demonstrated that ozonation transformed the molecular structure of influent dissolved organic matter (DOM), producing fractions that were highly bioavailable at a specific ozone dose of 0.5, which was inferred to be a turning point. With the increase of the specific ozone dose, the biofilm microbial consortium was substantially shifted, demonstrating a decrease in richness and diversity. Unexpectedly, the opportunistic pathogen Legionella was stimulated and occurred in approximately 40% relative abundance at the higher specific ozone dose of 1. Accordingly, the membrane filtration system with a specific ozone dose of 0.5 presented a lower biofilm thickness, a weaker fluorescence intensity, smaller concentrations of polysaccharides and proteins, and a lower Raman activity, leading to a lower hydraulic resistance, compared to that with a specific ozone dose of 1. Our findings highlight the interaction mechanism between molecular-level DOM composition, biofilm microbial consortium, and membrane filtration performance, which provides an in-depth understanding of the impact of ozonation on biofilm accumulation.


Assuntos
Ozônio , Purificação da Água , Membranas Artificiais , Ultrafiltração , Biofilmes
6.
Environ Sci Technol ; 58(13): 5866-5877, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38504110

RESUMO

Soil microbes, the main driving force of terrestrial biogeochemical cycles, facilitate soil organic matter turnover. However, the influence of the soil fauna on microbial communities remains poorly understood. We investigated soil microbiota dynamics by introducing competition and predation among fauna into two soil ecosystems with different fertilization histories. The interactions significantly affected rare microbial communities including bacteria and fungi. Predation enhanced the abundance of C/N cycle-related genes. Rare microbial communities are important drivers of soil functional gene enrichment. Key rare microbial taxa, including SM1A02, Gammaproteobacteria, and HSB_OF53-F07, were identified. Metabolomics analysis suggested that increased functional gene abundance may be due to specific microbial metabolic activity mediated by soil fauna interactions. Predation had a stronger effect on rare microbes, functional genes, and microbial metabolism compared to competition. Long-term organic fertilizer application increased the soil resistance to animal interactions. These findings provide a comprehensive understanding of microbial community dynamics under soil biological interactions, emphasizing the roles of competition and predation among soil fauna in terrestrial ecosystems.


Assuntos
Microbiota , Solo , Microbiologia do Solo , Bactérias/genética , Fungos/genética , Fungos/metabolismo
7.
mSystems ; 9(4): e0105523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38501864

RESUMO

Plant-associated diazotrophs strongly relate to plant nitrogen (N) supply and growth. However, our knowledge of diazotrophic community assembly and microbial N metabolism in plant microbiomes is largely limited. Here we examined the assembly and temporal dynamics of diazotrophic communities across multiple compartments (soils, epiphytic and endophytic niches of root and leaf, and grain) of three cereal crops (maize, wheat, and barley) and identified the potential N-cycling pathways in phylloplane microbiomes. Our results demonstrated that the microbial species pool, influenced by site-specific environmental factors (e.g., edaphic factors), had a stronger effect than host selection (i.e., plant species and developmental stage) in shaping diazotrophic communities across the soil-plant continuum. Crop diazotrophic communities were dominated by a few taxa (~0.7% of diazotrophic phylotypes) which were mainly affiliated with Methylobacterium, Azospirillum, Bradyrhizobium, and Rhizobium. Furthermore, eight dominant taxa belonging to Azospirillum and Methylobacterium were identified as keystone diazotrophic taxa for three crops and were potentially associated with microbial network stability and crop yields. Metagenomic binning recovered 58 metagenome-assembled genomes (MAGs) from the phylloplane, and the majority of them were identified as novel species (37 MAGs) and harbored genes potentially related to multiple N metabolism processes (e.g., nitrate reduction). Notably, for the first time, a high-quality MAG harboring genes involved in the complete denitrification process was recovered in the phylloplane and showed high identity to Pseudomonas mendocina. Overall, these findings significantly expand our understanding of ecological drivers of crop diazotrophs and provide new insights into the potential microbial N metabolism in the phyllosphere.IMPORTANCEPlants harbor diverse nitrogen-fixing microorganisms (i.e., diazotrophic communities) in both belowground and aboveground tissues, which play a vital role in plant nitrogen supply and growth promotion. Understanding the assembly and temporal dynamics of crop diazotrophic communities is a prerequisite for harnessing them to promote plant growth. In this study, we show that the site-specific microbial species pool largely shapes the structure of diazotrophic communities in the leaves and roots of three cereal crops. We further identify keystone diazotrophic taxa in crop microbiomes and characterize potential microbial N metabolism pathways in the phyllosphere, which provides essential information for developing microbiome-based tools in future sustainable agricultural production.


Assuntos
Microbiota , Microbiota/genética , Agricultura , Solo/química , Nitrogênio/análise , Produtos Agrícolas/metabolismo , Desenvolvimento Vegetal
8.
Environ Int ; 186: 108594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527398

RESUMO

The widespread use of copper and tetracycline as growth promoters in the breeding industry poses a potential threat to environmental health. Nevertheless, to the best of our knowledge, the potential adverse effects of copper and tetracycline on the gut microbiota remain unknown. Herein, mice were fed different concentrations of copper and/or tetracycline for 6 weeks to simulate real life-like exposure in the breeding industry. Following the exposure, antibiotic resistance genes (ARGs), potential pathogens, and other pathogenic factors were analyzed in mouse feces. The co-exposure of copper with tetracycline significantly increased the abundance of ARGs and enriched more potential pathogens in the gut of the co-treated mice. Copper and/or tetracycline exposure increased the abundance of bacteria carrying either ARGs, metal resistance genes, or virulence factors, contributing to the widespread dissemination of potentially harmful genes posing a severe risk to public health. Our study provides insights into the effects of copper and tetracycline exposure on the gut resistome and potential pathogens, and our findings can help reduce the risks associated with antibiotic resistance under the One Health framework.


Assuntos
Antibacterianos , Cobre , Microbioma Gastrointestinal , Tetraciclina , Animais , Cobre/toxicidade , Tetraciclina/farmacologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Fezes/microbiologia
9.
Environ Sci Technol ; 58(12): 5310-5324, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38482792

RESUMO

Global interest grows in blue foods as part of sustainable diets, but little is known about the potential and environmental performance of blue foods from rice-animal coculture systems. Here, we compiled a large experimental database and conducted a comprehensive life cycle assessment to estimate the impacts of scaling up rice-fish and rice-crayfish systems in China. We find that a large amount of protein can be produced from the coculture systems, equivalent to ∼20% of freshwater aquaculture and ∼70% of marine wild capture projected in 2030. Because of the ecological benefits created by the symbiotic relationships, cocultured fish and crayfish are estimated to be carbon-negative (-9.8 and -4.7 kg of CO2e per 100 g of protein, respectively). When promoted at scale to displace red meat, they can save up to ∼98 million tons of greenhouse gases and up to ∼13 million hectares of farmland, equivalent to ∼44% of China's total rice acreage. These results suggest that rice-animal coculture systems can be an important source of blue foods and contribute to a sustainable dietary shift, while reducing the environmental footprints of rice production. To harvest these benefits, robust policy supports are required to guide the sustainable development of coculture systems and promote healthy and sustainable dietary change.


Assuntos
Gases de Efeito Estufa , Oryza , Animais , Técnicas de Cocultura , Alimentos , Dieta
10.
Nat Food ; 5(3): 230-240, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528241

RESUMO

Cropland fragmentation contributes to low productivity and high abandonment risk. Using spatial statistics on a detailed land use map, we show that 10% of Chinese croplands have no potential to be consolidated for large-scale farming (>10 ha) owing to spatial constraints. These fragmented croplands contribute only 8% of total crop production while using 15% of nitrogen fertilizers, leading to 12% of fertilizer loss in China. Optimizing the cropping structure of fragmented croplands to meet animal food demand in China can increase animal food supply by 19%, equivalent to increasing cropland proportionally. This crop-switching approach would lead to a 10% and 101% reduction in nitrogen and greenhouse gas emissions, respectively, resulting in a net benefit of US$ 7 billion yr-1. If these fragmented croplands were relocated to generate large-scale farming units, livestock, vegetable and fruit production would be increased by 8%, 3% and 14%, respectively, and reactive nitrogen and greenhouse gas emissions would be reduced by 16% and 5%, respectively, resulting in a net benefit of US$ 44 billion yr-1. Both solutions could be used to achieve synergies between food security, economic benefits and environmental protection through increased agricultural productivity, without expanding the overall cropland area.


Assuntos
Gases de Efeito Estufa , Animais , Agricultura , Produção Agrícola/métodos , Verduras , Nitrogênio/química
11.
J Environ Manage ; 355: 120481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447515

RESUMO

Significant amounts of the greenhouse gas methane (CH4) are released into the atmosphere worldwide via freshwater sources. The surface methane maximum (SMM), where methane is supersaturated in surface water, has been observed in aquatic systems and contributes significantly to emissions. However, little is known about the temporal and spatial variability of SMM or the mechanisms underlying its development in artificial reservoirs. Here, the community composition of methanogens as major methane producers in the water column and the mcrA gene was investigated, and the cause of surface methane supersaturation was analyzed. In accordance with the findings, elevated methane concentration of SMM in the transition zone, with an annually methane emission flux 2.47 times higher than the reservoir average on a large and deep reservoir. In the transition zone, methanogens with mcrA gene abundances ranging from 0.5 × 103-1.45 × 104 copies/L were found. Methanobacterium, Methanoseata and Methanosarcina were the three dominate methanogens, using both acetic acid and H2/CO2 pathways. In summary, this study contributes to our comprehension of CH4 fluxes and their role in the atmospheric methane budget. Moreover, it offers biological proof of methane generation, which could aid in understanding the role of microbial methanogenesis in aerobic water.


Assuntos
Gases de Efeito Estufa , Água , Metano/análise , Água Doce , Atmosfera
13.
Glob Chang Biol ; 30(3): e17250, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500362

RESUMO

Nitrogen (N) deposition affects ecosystem functions crucial to human health and well-being. However, the consequences of this scenario for soil ecosystem multifunctionality (SMF) in forests are poorly understood. Here, we conducted a long-term field experiment in a temperate forest in China, where N deposition was simulated by adding N above and under the canopies. We discover that canopy N addition promotes SMF expression, whereas understory N addition suppresses it. SMF was regulated by fungal diversity in canopy N addition treatments, which is largely due to the strong resistance to soil acidification and efficient resource utilization characteristics of fungi. While in understory N addition treatments, SMF is regulated by bacterial diversity, which is mainly because of the strong resilience to disturbances and fast turnover of bacteria. Furthermore, rare microbial taxa may play a more important role in the maintenance of the SMF. This study provides the first evidence that N deposition enhanced SMF in temperate forests and enriches the knowledge on enhanced N deposition affecting forest ecosystems. Given the divergent results from two N addition approaches, an innovative perspective of canopy N addition on soil microbial diversity-multifunctionality relationships is crucial to policy-making for the conservation of soil microbial diversity and sustainable ecosystem management under enhanced N deposition. In future research, the consideration of canopy N processes is essential for more realistic assessments of the effects of atmospheric N deposition in forests.


Assuntos
Ecossistema , Nitrogênio , Humanos , Nitrogênio/análise , Solo , Microbiologia do Solo , Florestas , Bactérias/metabolismo
14.
Nat Ecol Evol ; 8(4): 717-728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383853

RESUMO

Viruses are crucial in shaping soil microbial functions and ecosystems. However, studies on soil viromes have been limited in both spatial scale and biome coverage. Here we present a comprehensive synthesis of soil virome biogeographic patterns using the Global Soil Virome dataset (GSV) wherein we analysed 1,824 soil metagenomes worldwide, uncovering 80,750 partial genomes of DNA viruses, 96.7% of which are taxonomically unassigned. The biogeography of soil viral diversity and community structure varies across different biomes. Interestingly, the diversity of viruses does not align with microbial diversity and contrasts with it by showing low diversity in forest and shrubland soils. Soil texture and moisture conditions are further corroborated as key factors affecting diversity by our predicted soil viral diversity atlas, revealing higher diversity in humid and subhumid regions. In addition, the binomial degree distribution pattern suggests a random co-occurrence pattern of soil viruses. These findings are essential for elucidating soil viral ecology and for the comprehensive incorporation of viruses into soil ecosystem models.


Assuntos
Solo , Vírus , Solo/química , Ecossistema , Viroma , Microbiologia do Solo , Ecologia , Vírus/genética
15.
Sci Data ; 11(1): 250, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413616

RESUMO

Antimicrobial resistance (AMR) poses a severe threat to global health. The wide distribution of environmental antibiotic resistance genes (ARGs), which can be transferred between microbiota, especially clinical pathogens and human commensals, contributed significantly to AMR. However, few databases on the spatiotemporal distribution, abundance, and health risk of ARGs from multiple environments have been developed, especially on the absolute level. In this study, we compiled the ARG occurrence data generated by a high-throughput quantitative PCR platform from 1,403 samples in 653 sampling sites across 18 provinces in China. The database possessed 291,870 records from five types of habitats on the abundance of 290 ARGs, as well as 8,057 records on the abundance of 30 mobile genetic elements (MGEs) from 2013 to 2020. These ARGs conferred resistance to major common types of antibiotics (a total of 15 types) and represented five major resistance mechanisms, as well as four risk ranks. The database can provide information for studies on the dynamics of ARGs and is useful for the health risk assessment of AMR.


Assuntos
Antibacterianos , Bases de Dados Genéticas , Resistência Microbiana a Medicamentos , Microbiota , Antibacterianos/farmacologia , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
16.
Environ Int ; 185: 108496, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359549

RESUMO

Artificial sweeteners (AS) are extensively utilized as sugar substitutes and have been recognized as emerging environmental contaminants. While the effect of AS on aquatic organisms has garnered recent attention, their effects on soil invertebrates and gut microbial communities remain unclear. To address this knowledge gap, we exposed springtails (Folsomia candida) to both single and combined treatments of four typical AS (sucralose [SUC], saccharin [SAC], cyclamate [CYC], and acesulfame [ACE]) at environmentally relevant concentrations of 0.01, 0.1 and 1 mg kg-1 in soil. Following the first-generational exposure, the reproduction of juveniles showed a significant increase under all the AS treatments of 0.1 mg kg-1. The transcriptomic analysis revealed significant enrichment of several Kyoto Encyclopedia of Gene and Genome pathways (e.g., glycolysis/gluconeogenesis, pentose and glucuronate interconversions, amino sugar, and nucleotide sugar metabolism, ribosome, and lysosome) in springtails under all AS treatments. Analysis of gut bacterial microbiota indicated that three AS (SUC, CYC, and ACE) significantly decreased alpha diversity, and all AS treatments increased the abundance of the genus Achromobacter. After the sixth-generational exposure to CYC, weight increased, but reproduction was inhibited. The pathways that changed significantly (e.g., extracellular matrix-receptor interaction, amino sugar and nucleotide sugar metabolism, lysosome) were generally similar to those altered in first-generational exposure, but with opposite regulation directions. Furthermore, the effect on the alpha diversity of gut microbiota was contrary to that after first-generational exposure, and more noticeable disturbances in microbiota composition were observed. These findings underscore the ecological risk of AS in soils and improve our understanding of the toxicity effects of AS on living organisms.


Assuntos
Microbioma Gastrointestinal , Poluentes Químicos da Água , Edulcorantes/toxicidade , Edulcorantes/análise , Edulcorantes/metabolismo , Solo , Poluentes Químicos da Água/análise , Ciclamatos/análise , Amino Açúcares , Nucleotídeos
17.
Environ Sci Technol ; 58(10): 4476-4486, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38382547

RESUMO

Antibiotic resistance genes (ARGs) are ancient but have become a modern critical threat to health. Gut microbiota, a dynamic reservoir for ARGs, transfer resistance between individuals. Surveillance of the antibiotic resistome in the gut during different host growth phases is critical to understanding the dynamics of the resistome in this ecosystem. Herein, we disentangled the ARG profiles and the dynamic mechanism of ARGs in the egg and adult phases of Tetramorium caespitum. Experimental results showed a remarkable difference in both gut microbiota and gut resistome with the development of T. caespitum. Meta-based metagenomic results of gut microbiota indicated the generalizability of gut antibiotic resistome dynamics during host development. By using Raman spectroscopy and metabolomics, the metabolic phenotype and metabolites indicated that the biotic phase significantly changed lipid metabolism as T. caespitum aged. Lipid metabolites were demonstrated as the main factor driving the enrichment of ARGs in T. caespitum. Cuminaldehyde, the antibacterial lipid metabolite that displayed a remarkable increase in the adult phase, was demonstrated to strongly induce ARG abundance. Our findings show that the gut resistome is host developmental stage-dependent and likely modulated by metabolites, offering novel insights into possible steps to reduce ARG dissemination in the soil food chain.


Assuntos
Antibacterianos , Formigas , Genes Bacterianos , Humanos , Adulto , Idoso , Antibacterianos/farmacologia , Ecossistema , Lipídeos
18.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366262

RESUMO

Cobamides, a class of essential coenzymes synthesized only by a subset of prokaryotes, are model nutrients in microbial interaction studies and play significant roles in global ecosystems. Yet, their spatial patterns and functional roles remain poorly understood. Herein, we present an in-depth examination of cobamide-producing microorganisms, drawn from a comprehensive analysis of 2862 marine and 2979 soil metagenomic samples. A total of 1934 nonredundant metagenome-assembled genomes (MAGs) potentially capable of producing cobamides de novo were identified. The cobamide-producing MAGs are taxonomically diverse but habitat specific. They constituted only a fraction of all the recovered MAGs, with the majority of MAGs being potential cobamide users. By mapping the distribution of cobamide producers in marine and soil environments, distinct latitudinal gradients were observed: the marine environment showed peak abundance at the equator, whereas soil environments peaked at mid-latitudes. Importantly, significant and positive links between the abundance of cobamide producers and the diversity and functions of microbial communities were observed, as well as their promotional roles in essential biogeochemical cycles. These associations were more pronounced in marine samples than in soil samples, which suggests a heightened propensity for microorganisms to engage in cobamide sharing in fluid environments relative to the more spatially restricted soil environment. These findings shed light on the global patterns and potential ecological roles of cobamide-producing microorganisms in marine and soil ecosystems, enhancing our understanding of large-scale microbial interactions.


Assuntos
Cobamidas , Microbiota , Metagenoma , Solo
19.
Environ Sci Technol ; 58(8): 3919-3930, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353611

RESUMO

The microorganisms present in kindergartens are extremely important for children's health during their three-year preschool education. To assess the risk of outdoor dust in kindergartens, the antibiotic resistome and potential pathogens were investigated in dust samples collected from 59 kindergartens in Xiamen, southeast China in both the winter and summer. Both high-throughput quantitative PCR and metagenome analysis revealed a higher richness and abundance of antibiotic resistance genes (ARGs) in winter (P < 0.05). Besides, the bloom of ARGs and potential pathogens was evident in the urban kindergartens. The co-occurrence patterns among ARGs, mobile genetic elements (MGEs), and potential pathogens suggested some bacterial pathogens were potential hosts of ARGs and MGEs. We found a large number of high-risk ARGs in the dust; the richness and abundance of high-risk ARGs were higher in winter and urban kindergartens compared to in summer and peri-urban kindergartens, respectively. The results of the co-occurrence patterns and high-risk ARGs jointly reveal that urbanization will significantly increase the threat of urban dust to human beings and their risks will be higher in winter. This study unveils the close association between ARGs/mobile ARGs and potential pathogens and emphasizes that we should pay more attention to the health risks induced by their combination.


Assuntos
Bactérias , Genes Bacterianos , Criança , Humanos , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , China , Urbanização , Antibacterianos/farmacologia
20.
Environ Res ; 249: 118384, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307180

RESUMO

A comprehensive monitoring and risk assessment of arsenic (As) pollution concerning surface water and sediment is performed in the Jie River basin, where gold smelting enterprises are concentrated. The study area is divide into six regions, labeled as A, B, C, D, E, and F, from sewage outlets to downstream. Results shows that with far away from the sewage outlets, the total As concentrations in water and sediment gradually decrease from regions A to F. However, in region F, the concentration of bioavailable As significantly increases in the sediment due to the higher pH, leading to the transformation of As(V) into more mobile As(III). In sediment, Paracladius sp. exhibits strong resistance to As pollution in sediment, which can potentially elevate the risk of disease transmission. In water bodies, diatoms and euglena are the main phytoplankton in the Jie River while toxic cyanobacteria exhibits lower resistance to As pollution. Overall, measures should be taken to ecologically remediate the sediment in downstream while implementing appropriate isolation methods to prevent the spread of highly contaminated sediments from regions near sewage outlets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...